
Problem Set One, CR15 ENS de Lyon. Course authorities : Karsai / Fleury / Unicomb

Due date : 09/11/2017, by 11:59 p.m.

Complementary material : graph.py, *.txt data files

1 Building an elementary graph library

In this problem set we will be dealing with a graph G = (V,E) where V is a set of vertices and E a set of
edges. In graph theory, the adjacency list representation of a graph is a collection of unordered lists, one for
each vertex in the graph. Since real world networks are often large and sparse, this is much more efficient
than an adjacency matrix representation. In our python library, we define our graph with a dictionary, where
node indices are keys, and values are the corresponding neighbour lists.

graph = {

"a" : ["c", "d", "g"],

"b" : ["c", "f"],

"c" : ["a", "b", "d", "f"],

"d" : ["a", "c", "e", "g"],

"e" : ["d"],

"f" : ["b", "c"],

"g" : ["a", "d"]

}

The aim of this problem set is to develop a rudimentary graph library. The skeleton of the library is provided
in the complementary material, leaving you room to develop the class Graph through solving the problems
below. The following code is provided as a .py file, which you will develop during the problem solving session
and ultimately present as an .ipynb file, namely a Jupyter notebook (formerly known as IPython notebook).

Add the following methods to the Graph class,
a) generate edges : list the edges E
b) add vertex : add a vertex to the graph G
c) add edges : add an edge to the graph G

2 Methods related to degree

In the following section we develop our library of functions, outputting characteristic properties of the
instance graph. These methods may be useful in subsequent sections.

2.1 Degree and isolated vertices

Add the following methods to the Graph class,
a) vertex degree, which outputs the degree of each vertex of the graph in a format of your choosing
b) find isolated vertices, which gives the set of zero-degree vertices, in a format of your choosing.

2.2 Density calculation

The graph density is defined as the ratio of the number of edges of a given graph, to the total number of
edges the graph could have. In other words, it measures how close a given graph is to a complete graph.

Create the method density that computes this parameter for the instance graph. A simple verification would
be to test your code on a random, complete and empty graph, where you know the densities in advance.

1



2.3 Degree sequence

The degree sequence of an undirected graph is defined as the sequence of its vertex degrees in a non-
increasing order. For our example, the degree sequence would be the tuple (4, 4, 3, 2, 2, 2, 1). Create a
method degree sequence that returns a tuple with the degree sequence of the instance graph.

2.4 Erdös-Gallai theorem

One may question whether a given degree sequence can be realised by a simple graph. The Erdös-Gallai
theorem states that a non-increasing sequence of n numbers di, for i = 1, ..., n, is the degree sequence of a
simple graph if and only if the sum of the sequence is even and the following condition is fulfilled:

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min (di, k) for k ∈ {1, ..., n} (1)

Develop a function erdos gallai within our Graph class to determine whether a sequence fulfills the Erdös-
Gallai theorem.

2.5 Clustering coefficient

The global clustering coefficient is based on triplets of nodes. A triplet consists of three nodes that are
connected by either two (open triplet) or three (closed triplet) undirected ties. A triangle consists of three
closed triplets, one centred on each of the nodes. The global clustering coefficient is the number of closed
triplets, or thrice the number of triangles, over the total number of triplets (both open and closed).

C =
3× number of triangles

number of connected triplets of vertices
(2)

Add the method global clustering coefficient, to compute this parameter for the instance graph.

3 Methods related to graph traversal

In this section we add more depth to the Graph class. To develop the following functions, it may be useful
to call upon previously solved problems to avoid duplicating the same calculations.

3.1 Connected components

A connected component of a graph is a subgraph in which any two vertices are connected to each other by
paths, and which is connected to no additional vertices in the supergraph. Compute the sizes and number
of connected components for the instance graph, defining in your class the function connected component.

3.2 Shortest path

The shortest path problem concerns finding a path between two vertices in a graph such that the sum of
the weights of its constituent edges is minimised. In an unweighted graph, this is the same as minimising
the number of edges traversed. For each pair of vertices (u, v), compute the distance between u and v in a
method shortest path.

3.3 Diameter

First, write a diameter method outputing the maximum value of the shortest path distances. After coding
this tool, write a second method biggest component diameter that computes the diameter of the biggest
component.

2



3.4 Spanning tree

The spanning tree T of a connected graph G is a tree that includes all of the vertices and some or all of the
edges of G. For a weighted graph, a Minimum Spanning Tree, or MST, is then a spanning tree with weight
less than or equal to the weight of every other spanning tree. Unweighted graphs can be viewed as having
uniform edge weights, with spanning trees having a total weight of n− 1.

Implement a spanning tree algorithm in the method spanning tree.

4 Testing on real datasets

In this section you will test your Graph class on three datasets, chosen from the online database http://konect.uni-
koblenz.de/networks/

a) the Zachary karate club
b) a random graph, 102 nodes and 103 edges
c) a random graph, 103 nodes and 4× 103 edges

To facilitate the computation, we have already extracted the biggest component. The input format is an
unweighted edge list, where a row contains the tab separated values u and v if (u, v) belongs to the edge list
E.

4.1 Importing real data

Create and test a piece of code that loads the graph from a file. Note that the graphs are supplied in the
format of edge lists, whereas the Graph class inputs a dictionary. So, consider that you will have to first
manipulate the supplied data.

4.2 Properties of supplied graphs

For each dataset, compute the number of vertices, number of edges, density and clustering coefficient with
your new graph library. Then, complete the table below.

dataset number of vertices number of edges density diameter clustering coefficient
Zachary
random, N = 102

random, N = 103

3


